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The scalar linear stochastic differential equation

dx(t) = ax(t)dt+

m∑

i=1

bix(t)dBi(t), t ≥ t0.

The sample Lyapunov exponent is

lim
t→∞

1

t
log|x(t; t0, x0)| = a− 1

2

m∑

i=1

b2i , a.s.
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Li et al. (2016) proposed the sufficient conditions for the

exponentially instability to G-SDEs with the following form

dx(t) = f(t, x(t))dt+ h(t, x(t))d〈B〉(t)
+σ(t, x(t))dB(t), t ≥ 0.

h–be viewed as mean-uncertainty perturbation

σ– be viewed as volatility-uncertainty perturbation

A natural question is whether we can design a controller to

make the system be stable.
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1. Non linear expectations: a general framework

Setting

Let Cl,Lip(R) denote the space of all local Lipschitz functions

ϕ : Rn → R, satisfying that

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, x, y ∈ R
n,

for some C > 0, m ∈ N depending on ϕ.

Let Ω = R and let H be a linear space of real functions s.t.

X1,X2, · · · ,Xn ∈ H ⇒ ϕ(X1,X2, · · · ,Xn) ∈ H, ∀ϕ ∈ Cl,Lip(R).
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1. Non linear expectations: a general framework

Definition

A non linear expectation Ê is a functional H → R, for X,Y ∈ H,

satisfying the following properties:

Monotonicity : if X ≥ Y, then Ê[X] ≥ Ê[Y ].

Constant preservation : Ê[c] = c for c ∈ R.

Subadditivety : Ê[X + Y ] ≤ Ê[X] + Ê[Y ] or

Ê[X − Y ] ≥ Ê[X]− Ê[Y ].

Positive homogeneity : Ê[λX] = λÊ for λ ≥ 0.

Remark

Norm on H : ||X|| := Ê|X|,X ∈ H. (H, || · ||) is a normed space.
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2. G-Normal distribution

Let 0 ≤ σ2 ≤ σ2,X ∈ H, G(a) = 1
2 (a

+σ2 − a−σ2), a ∈ R.

G-case (Definition)

X ∼ N(0, [σ2, σ2]) is characterized by u(t, x) = Ê[ϕ(x+
√
tX)],

for ϕ ∈ Cl,Lip(R) which is the unique viscosity solution of

∂tu−G(∂2
xxu) = 0, u(0, x) = ϕ(x).

Classical case

If σ2 = σ2 = σ2,X ∼ N(0, σ2) is characterized by

u(t, x) = Ê[ϕ(x+
√
tX)], for ϕ ∈ Cl,Lip(R) which satisfies that

∂tu =
1

2
σ2∂2

xxu(t, x), u(0, x) = ϕ(x).
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3. G-Brownian motion under G-expectation

Setting

Let Ω denote the space of all R–valued continuous functions

with ω0 = 0, equipped with the distance

ρ(ω1, ω2) =
∑∞

i=1 2
−i

[(
maxt∈[0,i] |ω1

t − ω2
t |
)
∧ 1

]
.

Canonical process on Ω : Bt(ω) = ωt, t ≥ 0.

For t > 0, we set

Ht := {ϕ(ωs1 , ωs2 , · · · , ωsn), n > 1,

s1, s2, · · · , sn ∈ [0, t], ϕ ∈ Cl,Lip(R
n)}.

Set

H :=
∞⋃

i=1

Hn.

Ren Yong Stabilization of SDEs driven by G-Brownian motion



Non linear expectations and related stochastic analysis Developments on Itô’s calculus based on G-B.M. and G-SDE Stabilization of

3. G-Brownian motion under G-expectation

Definition

The canonical process (Bt)t≥0 on (Ω,H, Ê) is called as a

G-Brownian motion if

(1) Initial value : B0(ω) = 0;

(2) Distribution : Bt+s −Bt is N(0, [σ2s, σ2s]) distributed for

s, t ≥ 0;

(3) Increment independent : for

n ≥ 2, 0 ≤ t1 ≤ · · · ≤ tn, Btn −Btn−1
is independent of

(Bt1 , Bt2 , · · · , Btn−1
).
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3. G-Brownian motion under G-expectation

Theorem

Let (Bt(ω))t≥0 be a process on (Ω,H, Ê) such that

(1) For each 0 ≤ t1 ≤ · · · ≤ tn, Btn −Btn−1
is independent of

(Bt1 , Bt2 , · · · , Btn).

(2) Bt has the same distribution as Bt+s −Bt for s, t ≥ 0;

(3) limt↓0 Ê[|Bt|3]t−1 = 0,

then B is a G-Brownian motion, for σ2 = −Ê[−B2
1 ], σ

2 = Ê[B2
1 ].
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4. Itô’s integral of G-Brownian motion

Setting

L2
G(Ht) := {ξ ∈ Ht : Ê|ξ|2 < ∞}.

L2,0
G ([0, T ]) of simple processes by

L2,0
G ([0, T ]) :=

{
ηt(ω) :=

N−1∑

j=1

ξtj (ω)I[tj ,tj+1); ξtj (ω) ∈

L2
G(Htj ), 0 = t0 < t1 < · · · < tN = T

}
.

Ren Yong Stabilization of SDEs driven by G-Brownian motion



Non linear expectations and related stochastic analysis Developments on Itô’s calculus based on G-B.M. and G-SDE Stabilization of

4. Itô’s integral of G-Brownian motion

Definition

For ηt(ω) =
N−1∑
j=1

ξtj (ω)I[tj ,tj+1) ∈ Lp,0
G ([0, T ]) , we define the Itô’s

integral by I(η) =
∫ T
0 ηtdBt :=

∑N−1
j=1 ξtj

(
Btj+1∧t −Btj∧t

)
.

Property

Ê

∫ T

0
ηtdBt = 0, Ê

(∫ T

0
ηtdBt

)2

≤
∫ T

0
Ê(ηt)

2dt.

L2
G([0, T ]) denotes the completion of L2,0

G ([0, T ]) under the norm

|η|L2
G
([0,T ]) =

(∫ T
0 Ê(ηt)

2dt
)1/2

. Hence, the stochastic integral

can be extended to L2
G([0, T ]).
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4. Itô’s integral of G-Brownian motion

Quadratic Variation Process

The quadratic variation process of the G-Brownian motion B by

〈B〉t := lim
N→∞

N−1∑

j=1

(
BtN

j+1
−BtN

j

)2
= B2

t − 2

∫ t

0
BsdBs.

Property

Ê

[(∫ T

0
ηtdBt

)2
]
= Ê

[∫ T

0
(ηt)

2d〈B〉t
]
, η ∈ L2

G([0, T ]).
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5. Developments on Itô’s calculus based on G-B.M. and G-SDE

Peng (2007a, 2007b) established the fundamental theory of

G-expectation, Itô stochastic calculus based on G-expectation.

Denis et al. (2011) gave the application on risk dynamics

based on G-B.M..

Gao (2009, 2010) proved the pathwise properties and

homeomorphic property with respect to the initial values and

established the large deviation principle for G-SDE.

Luo et al. (2014, 2016) established the relation between

G-SDE and ODE and studied a class of reflected G-SDEs

with nonlinear resistance.
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Zhang et al. (2011, 2012) considered the exponential stability

for G-SDE and investigated the stochastic optimal control

problems under G-expectation.

Lin (2013) proved the existence and uniqueness for a class of

reflected G-SDEs.

Li et al. (2016) studied the solvability and stability for G-SDE

with Lyapunov-type conditions by localization methods.

Hu, Ji, Peng, Song et al. in series works discussed backward

SDE driven by G-B.M. and its applications in stochastic

recursive optimal control problem an so on.
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Ren et al. (2011, 2013, 2015, 2016a, 2016b, 2017a-2017d,

2018a-2018e)

stability for some classes of (impulsive) G-SDE (neural

networks)

the existence, uniqueness and stability for G-SDE with infinite

delay

the square-mean pseudo almost automorphic mild solutions for

stochastic evolution equations driven by G-Brownian motion

the multi-valued G-SDE and its related optimal control

stabilization of G-SDE and applications
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6-1. Stabilization of G-SDEs (feedback control)

We consider the following G-SDE

dx(t) = f(t, x(t))dt+ h(t, x(t))d〈B〉(t)
+σ(t, x(t))dB(t), t ≥ 0, (3.1)

the initial data x(0) = x0 ∈ Rn, B(·) a one dimensional

G-Brownian motion, 〈B〉(·) the quadratic variation process of

the G-BM B(·).
f, h, σ : R+ × Rn → Rn and f, h, σ ∈ M2

G(0, T ).
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Theorem 1 (Li et al. (2016)) For the system (3.1), whose

coefficients are deterministic functions and satisfy the

Lipschitz condition in x. If there exists a function

V (t, x) ∈ C1,2(R+ × Rn; R+) and three positive constants

c1, c2 and q such that

c1|x(t)|p ≤ V (t, x(t)) ≤ c2|x(t)|p

and

LV (t, x(t)) ≥ η|x(t)|q.

Then, the trivial solution of system (3.1) is qth

exponentially instable, that is,

E|x(t)|q ≥ C|x0|qeηt.
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If the system (3.1) is unstable, we design a controller

u(t, x(t)) in the drift part so that the system becomes stable.

The controlled system is expressed as

dx(t) = [f(t, x(t)) + u(t, x(t))]dt+ h(t, x(t))d〈B〉(t)
+σ(t, x(t))dB(t), t ≥ 0. (3.2)

For stability analysis, we assume that

x0 = 0, f(t, 0) ≡ 0, u(t, 0) ≡ 0, h(t, 0) ≡ 0, σ(t, 0) ≡ 0 for all

t ≥ 0, then the system admits a trivial solution x(t) ≡ 0.
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Let C1,2(R+ × Rn; R+) be the family of all nonnegative

functions U(t, x) on R+ × Rn, which once differentiable are

continuous in t and twice differentiable in x.

If U ∈ C1,2(R+ × Rn; R+), we define an operator LU as

follows

LU(t, x) := Ut(t, x) + Ux(t, x)[f(t, x) + u(t, x)]

+G (〈Ux(t, x), 2h(t, x)〉 + 〈Uxx(t, x)σ(t, x), σ(t, x)〉) ,

where

Ut(t, x) =
∂U(t, x)

∂t
,

Ux(t, x) =

(
∂U(t, x)

∂x1
,
∂U(t, x)

∂x2
, · · · , ∂U(t, x)

∂xn

)
,

Uxx(t, x) =

(
∂2U(t, x)

∂xi∂xj

)

n×n

.
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Theorem 2 The system (3.2) is pth moment exponentially

stable (E|x(t, x0)|p ≤ M |x0|pe−λt, t ≥ 0 ) if there exists a

positive constant λ such that the function U(t, x(t)) and

LU(t, x(t)) satisfy the following conditions.

(A1) There are two positive constants ρ1 and ρ2 such that

ρ1|x(t)|p ≤ U(t, x(t)) ≤ ρ2|x(t)|p. (3.3)

(A2) There exists a positive constant λ such that

LU(t, x(t)) ≤ −λU(t, x(t)). (3.4)
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6-2. An example

We discuss the following one-dimensional G-SDE,

dx(t) =
1

2
x(t) cos tdt+

(
π

2
+

1

2
arctan t

)
x(t)d〈B〉(t)

+
√
π + arctan tx(t)dB(t), t ≥ 0, (3.5)

where B(t) is one dimensional G-Brownian motion and

B(t) ∼ N(0, [ 1π ,
2
π ]). Let U = |x|2. We have

Ux(t, x(t))f(t, x(t)) = |x(t)|2 cos t,

Ux(t, x(t))h(t, x(t)) = 2|x(t)|2
(
π

2
+

1

2
arctan t

)
,

Uxx(t, x(t))σ
2(t, x(t)) = 2|x(t)|2(π + arctan t)
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G (〈Ux(t, x), 2h(t, x)〉 + 〈Uxx(t, x)σ(t, x), σ(t, x)〉)
= G

(
2|x|2(π + arctan t) + 2|x|2(π + arctan t)

)

= G
(
4|x|2(π + arctan t)

)

≥ G
(
2π|x|2

)

= 2|x|2.
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LU(t, x(t)) = 2x(t)f(t, x(t)) +G
(
〈Ux(t, x), 2h(t, x)〉

+〈Uxx(t, x)σ(t, x), σ(t, x)〉
)

≥ −|x(t)|2 + 2|x(t)|2

= |x(t)|2.

From Theorem 1, the system (3.5) is not mean square

exponentially stable.
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Let us design a linear feedback controller u(t, x(t)) = kx(t),

where k is a constant. The controlled system has the form

dx(t) =

[
1

2
x(t) cos t+ kx(t)

]
dt

+

(
π

2
+

1

2
arctan t

)
x(t)d〈B〉(t)

+
√
π + arctan tx(t)dB(t), t ≥ 0. (3.6)
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Letting k = −5, we have

LU(t, x(t)) = Ux(t, x)[f(t, x(t)) + u(x(t))]

+G (〈Ux(t, x), 2h(t, x)〉 + 〈Ux(t, x)σ(t, x), σ(t, x)〉)

= 2x(t)

[
1

2
x(t) cos t− 5x(t)

]

+G
(
2|x(t)|2(π + arctan t) + 2|x(t)|2(π + arctan t)

)

≤ |x(t)|2 − 10|x(t)|2 +G(6π|x(t)|2)

= −9|x(t)|2 + 1

2
· 2
π
· 6π|x(t)|2

= −3|x(t)|2.

From Theorem 2, the controlled system (3.6) is mean square

exponentially stable.
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6-3. Stabilization of G-SDEs (discrete-time state observation)

We consider the following G-SDE

dx(t) = [f(t, x(t)) + u(t, x(δt))]dt+ h(t, x(t))d〈B〉(t)
+σ(t, x(t))dB(t), t ≥ 0,

where δt = [t/τ ]τ is the integer part of t/τ , τ is the discrete-time

observation gap.
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6-3. An example

We discuss the following one-dimensional G-SDE,

dx(t) = x(t) sin tdt+ (2 + sin t)x(t)d〈B〉(t)
+
√
3 + cos tx(t)dB(t), t ≥ 0, (3.7)

where B(t) is one dimension G-Brownian motion and

B(t) ∼ N(0, [12 , 1]).

From Li et al. (2016), the system (3.7) is not mean square

exponentially stable.
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Let us design a discrete-time linear feedback controller

function with the form

dx(t) = [x(t) sin t−7x(δt)]dt+ (2 + sin t)x(t)d〈B〉(t)
+x(t)

√
3 + cos tdB(t), t ≥ 0, (3.8)

with τ < 0.000785.
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